Hydrogen sulfide metabolism regulates endothelial solute barrier function
نویسندگان
چکیده
Hydrogen sulfide (H2S) is an important gaseous signaling molecule in the cardiovascular system. In addition to free H2S, H2S can be oxidized to polysulfide which can be biologically active. Since the impact of H2S on endothelial solute barrier function is not known, we sought to determine whether H2S and its various metabolites affect endothelial permeability. In vitro permeability was evaluated using albumin flux and transendothelial electrical resistance. Different H2S donors were used to examine the effects of exogenous H2S. To evaluate the role of endogenous H2S, mouse aortic endothelial cells (MAECs) were isolated from wild type mice and mice lacking cystathionine γ-lyase (CSE), a predominant source of H2S in endothelial cells. In vivo permeability was evaluated using the Miles assay. We observed that polysulfide donors induced rapid albumin flux across endothelium. Comparatively, free sulfide donors increased permeability only with higher concentrations and at later time points. Increased solute permeability was associated with disruption of endothelial junction proteins claudin 5 and VE-cadherin, along with enhanced actin stress fiber formation. Importantly, sulfide donors that increase permeability elicited a preferential increase in polysulfide levels within endothelium. Similarly, CSE deficient MAECs showed enhanced solute barrier function along with reduced endogenous bound sulfane sulfur. CSE siRNA knockdown also enhanced endothelial junction structures with increased claudin 5 protein expression. In vivo, CSE genetic deficiency significantly blunted VEGF induced hyperpermeability revealing an important role of the enzyme for barrier function. In summary, endothelial solute permeability is critically regulated via exogenous and endogenous sulfide bioavailability with a prominent role of polysulfides.
منابع مشابه
Extracellular transsulfuration generates hydrogen sulfide from homocysteine and protects endothelium from redox stress.
Homocysteine, a cardiovascular and neurocognitive disease risk factor, is converted to hydrogen sulfide, a cardiovascular and neuronal protectant, through the transsulfuration pathway. Given the damaging effects of free homocysteine in the blood and the importance of blood homocysteine concentration as a prognosticator of disease, we tested the hypotheses that the blood itself regulates homocys...
متن کاملKruppel-like factor 2 regulates endothelial barrier function.
OBJECTIVE A central function of the endothelium is to serve as a selective barrier that regulates fluid and solute exchange. Although perturbation of barrier function can contribute to numerous disease states, our understanding of the molecular mechanisms regulating this aspect of endothelial biology remains incompletely understood. Accumulating evidence implicates the Kruppel-like factor 2 (KL...
متن کاملHydrogen Sulfide Stimulates Ischemic Vascular Remodeling Through Nitric Oxide Synthase and Nitrite Reduction Activity Regulating Hypoxia‐Inducible Factor‐1α and Vascular Endothelial Growth Factor–Dependent Angiogenesis
BACKGROUND Hydrogen sulfide (H(2)S) therapy is recognized as a modulator of vascular function during tissue ischemia with the notion of potential interactions of nitric oxide (NO) metabolism. However, little is known about specific biochemical mechanisms or the importance of H(2)S activation of NO metabolism during ischemic tissue vascular remodeling. The goal of this study was to determine the...
متن کاملHydrogen sulfide improves vessel formation of the ischemic adductor muscle and wound healing in diabetic db/db mice
Objective(s): It has been demonstrated that hydrogen sulfide plays a vital role in physiological and pathological processes such as regulating inflammation, oxidative stress, and vessel relaxation. The aim of the study was to explore the effect of hydrogen sulfide on angiogenesis in the ischemic adductor muscles of type 2 diabetic db/db mice and ischemic diabetic wound...
متن کاملThe novel proangiogenic effect of hydrogen sulfide is dependent on Akt phosphorylation.
OBJECTIVE Hydrogen sulfide (H(2)S) has been reported to be a gasotransmitter which regulates cardiovascular homeostasis. The present study aims to examine the hypothesis that hydrogen sulfide is able to promote angiogenesis. METHODS Angiogenesis was assessed using in vitro parameters (i.e. endothelial cell proliferation, adhesion, transwell migration assay, scratched wound healing and formati...
متن کامل